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Abstract
Density functional theory provides an ideal microscopic theory to address freezing and
crystallization problems. We review the application of static density functional theory for the
calculation of equilibrium phase diagrams. We also describe the dynamical extension of density
functional theory for systems governed by overdamped Brownian dynamics. Applications of
density functional theory to crystallization problems, in particular to heterogeneous crystal
nucleation and subsequent crystal growth, are summarized. Heterogeneous nucleation at an
externally imposed nucleation cluster is discussed in detail, in particular for a simple
two-dimensional dipolar system. Finally the relation of dynamical density functional theory and
the phase field crystal approach are outlined.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Crystal growth processes are of high relevance for a
variety of different problems ranging from crystallization
of proteins [1] and other biological macromolecules [2]
over the construction of photonic crystals with an optical
bandgap [3] to applications in, for example, metallurgy [4].
A full microscopic understanding of crystal growth with the
interparticle interactions and the thermodynamic boundary
conditions as the only input is still a great challenge since it
requires a microscopic theory of freezing. In this contribution
we discuss how two successful concepts, namely classical
density functional theory (DFT) and the phase field crystal
(PFC) method, can be applied to solve this problem in a highly
satisfactory way.

Investigations in recent years in (soft) condensed matter
have given unambiguous evidence that (static) DFT is a
very versatile and powerful tool to study the structural and
thermodynamic properties of a wide variety of spatially
inhomogeneous systems (for an overview we refer to [5, 6]).
This refers, for instance, to fluids in different geometries
of confinement [7], interfacial problems, such as surface

melting [8] or fluid interfaces, or crystallization, homogeneous
liquid–gas nucleation [9] to name a few. In this contribution
we focus on the phenomenon of crystallization. Starting from
the interparticle potential, �(r), and the fluid correlations as
an input, classical DFT is able to predict the crystallization
transition and the full crystal structure. We will also give
evidence that static DFT in combination with its dynamical
extension, the so-called dynamic DFT (DDFT), represent ideal
tools to study also heterogeneous crystal nucleation.

On the other hand, the PFC method has turned out to
be highly successful in a broad variety of problems, such as
interfaces [10], polycrystalline pattern formation [11, 12], or
crystal nucleation and growth (see, e.g., [13–16]) to name a
few. First developed by Elder and co-workers [17, 18] it is an
extension of the phase field theory [19], suitably generalized to
a situation with a crystal order parameter.

This contribution is structured as follows. In section 2
we provide a summary of the most relevant features of the
concept of classical DFT, including a short overview over
the commonly used density functionals, as well as a brief
introduction into DDFT. Section 3 is dedicated to an outline
of how to study heterogeneous crystal nucleation starting from
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the interparticle potential. The DFT approach requires some
building blocks which are needed as first steps before the
nucleation problem itself can be addressed: the bulk phase
diagram and the fluid–solid interface. Then we focus on the
critical nucleus for heterogeneous nucleation: four typical
set-ups (motivated by experiment) will be discussed, using
different types of confining walls, inhomogeneous grains or
nucleation seeds. Section 3 is concluded by an example,
namely by a DFT-based study on heterogeneous nucleation in
a two-dimensional dipolar system. In section 4 we establish
a relation between DDFT and the concept of the PFC model.
This paper is closed with concluding remarks.

2. Classical density functional theory

2.1. Static density functional theory

Classical density functional theory (DFT) can be viewed as a
reformulation of statistical mechanics in terms of functionals
and correlation functions. The central entities of this concept
are the one-particle density, ρ(r), and the Helmholtz free
energy functional, F[ρ]. In the following we briefly outline
the formalism.

We consider a system of particles confined in a volume
V , which is in contact with a heat and particle reservoir,
specified by a temperature T and a chemical potential μ.
Further, the system is under the influence of an external one-
particle potential, Vext(r). ρ(r) is defined as a grand-canonical
ensemble average:

ρ(r) =
〈 ∑

i

δ(r − ri )
〉
, (1)

where ri denotes the particle positions.
It is rather easy to show that ρ(r) is uniquely defined by

Vext(r). However, the opposite statement is also true, a fact
which is less obvious: a given equilibrium one-particle density,
ρ0(r), also determines in a unique way the external potential
Vext(r); for the proof of this remarkable property, we refer
to [6].

All thermodynamic properties of the system can be
obtained from the grand potential, � = �[ρ0], which is a
functional of ρ0(r), i.e.

�[ρ0] = F[ρ0] +
∫

dr [Vext(r)− μ]ρ0(r), (2)

introducing the Helmholtz free energy functional, F[ρ0].
Taking into account the above remarks, both �[ρ0] and F[ρ0]
are unique functionals of ρ0(r).

If we now consider � as defined in (2) as a functional
for a one-particle density ρ(r), which is not necessarily the
equilibrium density, ρ0(r), then a further important property of
�[ρ] can be derived, namely

�[ρ] � �[ρ0]; (3)

in addition, the equal sign holds only if ρ(r) = ρ0(r).
Since ρ0(r) obviously minimizes �[ρ], the equilibrium one-
particle density can be determined from either of the following

equations:

δ�[ρ]
δρ(r)

∣∣∣∣
ρ=ρ0

= 0 or
δF[ρ]
δρ(r)

∣∣∣∣
ρ=ρ0

+ Vext(r)− μ = 0;
(4)

the respective first terms represent functional derivatives.
The Helmholtz free energy functional can conveniently be

split into an ideal (‘id’) and an excess (‘ex’) contribution, i.e.
F[ρ] = Fid[ρ] + Fex[ρ]. The first term is given by

Fid[ρ] = kBT
∫

drρ(r){ln[ρ(r)�3] − 1}; (5)

here kB is Boltzmann’s constant and � is the de Broglie
wavelength. For obvious reasons, F[ρ] and �[ρ] provide full
information about the thermodynamic properties of the system.
In addition, via suitable functional derivatives of Fex[ρ],
the hierarchy of direct correlation functions, c(n)(r1, . . . , rn),
can be generated, which provides full information about the
structural properties of the system:

c(n)(r1, . . . , rn) = −β δnFex[ρ]
δρ(r1) · · · δρ(rn)

∣∣∣∣
ρ0=ρ

(6)

with β = 1/(kBT ). For n = 2 and taking the limit of
a spatially homogeneous one-particle density (i.e. ρ(r) →
ρ = const.), c(2)(r1, r2) becomes the Ornstein–Zernike direct
correlation function, c(r) [20].

2.2. Approximations

Apart from a few rather (academic) systems, no exact
expressions for Fex[ρ] are available. Thus one is forced to
resort to approximate approaches. The most commonly used
approaches are perturbative and mapping schemes. Within the
class of perturbative approaches, we highlight the pioneering
work of Ramakrishnan and Yussouff [21] who proposed to
expand Fex[ρ] in a functional Taylor series around the density
of a homogeneous reference fluid; the expansion functions are
the direct correlation functions of the homogeneous system.
Usually this expansion is truncated at second order. The
other class of approaches, the so-called mapping schemes,
were introduced in the 1980s [22–27] where the non-uniform
system, characterized by the one-particle density ρ(r), is
locally mapped onto a uniform fluid of an effective density,
ρ̄(r), introducing some weight function w(r). This category
of approximate schemes includes approaches such as weighted
density or modified weighted density approximations. The
function w(r) is related via nonlinear differential equations to
the direct correlation functions of the homogeneous system.
For an overview we refer to [6]. So far, all these schemes
are general enough to be applicable to systems with arbitrary
interactions.

Practical applications have revealed that particular
approximate approaches have proven to be highly successful
for well-defined categories of systems. We start with the
fundamental measure theory proposed by Rosenfeld [28] and
later in an equivalent form by Kierlik and Rosinberg [29, 30].
This weighted density approach that was originally derived for
hard spheres but which has proven to be highly appropriate
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for even more complex hard-core systems (for an overview
see [31], for a more accurate extension of Rosenfeld’s
functional see, for instance, [32]). For the topic addressed in
this contribution the existence of an accurate density functional
Fex[ρ] for this system is of particular relevance since hard
spheres represent either a suitable potential for a certain class
of colloidal particles or can be used as a convenient reference
system in more complex (effective) interactions.

Another important class of soft matter systems are
those which are characterized by (effective) soft or ultra-soft
interactions, �(r), specified via

∫ ∞
0 r 2 dr�(r) < ∞. Here,

it has been shown [33–38] that a mean field (MF) type of
functional, i.e.

Fex[ρ] = 1
2

∫
dr dr′ρ(r)�(|r − r′|)ρ(r′) (7)

is more appropriate. It can even be demonstrated that this
functional becomes more accurate as the density grows.

2.3. Dynamic density functional theory (DDFT)

We now discuss the dynamical extension of density functional
theory towards Brownian dynamics which is appropriate for
colloidal particles. The overdamped dynamics of a set of N
identical, spherical, colloidal particles, immersed in a solvent,
which serves for damping and as a heat bath, is set by the
Langevin equations. Provided there are no hydrodynamic
interactions between the particles, these equations are as
follows:

ṙi = γ−1(Fi + fi ), i = 1, . . . , N. (8)

Here, the dot denotes a time derivative and γ = 3πη0σ

is the friction coefficient for a sphere of diameter σ in
a solvent of shear viscosity η0. The deterministic force
acting on particle i is arising from an external potential
Vext(ri , t) and a pairwise additive interparticle potential
�(|ri − r j |). The forces fi originate from the solvent
and are Gaussian white noise terms, the second moment
of which is fixed by the thermal energy kBT . The set of
coupled, stochastic differential equations (8) for the particle
coordinates is stochastically equivalent to a deterministic
evolution equation for the N-particle probability density
W ({r}, t), known as the Smoluchowski equation [39, 40].
This equation can be exactly integrated to obtain an exact
equation for the time-dependent one-particle density field
ρ(r, t) [41]. The averaged equation still involves a density
pair correlation in non-equilibrium ρ(2)(r, r′, t) which can be
approximated by a yet unspecified equilibrium two-particle
density correlation ρ

(2)
0 (r, r′); the latter is evaluated at a

corresponding equilibrium fluid, in which the equilibrium
density ρ0(r) is equal to the instantaneous one-particle density
ρ(r, t) of the non-equilibrium system. This replacement is
called an adiabatic approximation. As a result [41], the
adiabatic approximation leads to the following deterministic
equation for the time evolution of the one-particle density
ρ(r, t):

ρ̇(r, t) = γ−1∇ ·
[
ρ(r, t)∇ δF[ρ(r, t)]

δρ(r, t)

]
. (9)

This equation is the cornerstone of dynamical density
functional theory (DDFT) as it connects the continuity
equation of the density [42] to the microscopic equilibrium
density functional.

In practice, the basic approximations in DDFT involve
both the fundamental underlying adiabatic approximation and
a concrete approximation of the static density functional.
For a hard-rod fluid, the functional is known exactly and
hence the adiabatic approximation can be tested in its bare
bones [43]. Finally, if the dynamics of the colloids is
governed by hydrodynamic interactions extra terms are needed
to incorporate those [44]. Orientational degrees of freedom
can also be cast into the DDFT form revealing non-trivial
translational–rotational-coupling terms [45]. We emphasize
that, as it stands here, the DDFT has no additional noise term.
The relevance of noise is discussed, for example, in [46, 47].

3. From interparticle interactions to heterogeneous
nucleation

3.1. The concept

3.1.1. Prerequisites to study heterogeneous nucleation.

Interparticle potential. The system is specified by its
interparticle potential, �(r); we restrict ourselves to radially
symmetric interactions. For colloidal particles, �(r)
represents an effective interaction, where both the degrees of
freedom of the hundreds or thousands of constituent particles
and of the countless solvent particles have been traced out
via suitable averaging methods (see, e.g., [48]). Often these
effective interactions can be approximated rather accurately by
model potentials, such as hard-sphere, hard-core Yukawa or
dipole–dipole interactions. Also for the case of liquid metals,
effective interactions can be deduced by averaging over the
degrees of freedom of the electrons; they differ in their shape
substantially from those of colloidal particles (see, e.g., [49]).

Bulk phase diagram. Based on these interactions, the bulk
phase diagram of the system can be calculated. For the
disordered gas and fluid phases a large variety of reliable liquid
state theories is available [20]. The thermodynamic properties
of the ordered solid phase(s), on the other hand, can be readily
evaluated via a DFT-based approach as outlined in section 2.1
and using one of the approximate schemes presented in
section 2.2. In an effort to describe the properties of the
ordered phase(s), the one-particle density ρ(r) is assumed to
be a superposition of Gaussian density peaks located at the
lattice points of a candidate structure. In case these lattices are
not known a priori, they can be identified among all possible
lattices in a free minimization procedure. In this context,
genetic-algorithm-based optimization techniques have turned
out to be highly successful both in hard [50, 51] as well as in
soft matter systems [52].

The fluid–solid interface. At solid–fluid coexistence, the
structure and free energy of the fluid–solid interface and its
anisotropy with respect to crystal orientation will be obtained
by free minimization of the density functional. While for hard
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a) b)

d)c)

Figure 1. Schematic plots of the four different set-ups for
heterogeneous nucleation discussed in this contribution: (a) a crystal
nucleus near a smooth wall, (b) a crystal nucleus near a structured
wall, (c) a crystal nucleus close to a large spherical particle and (d) a
nucleus close to a set-up of fixed particles; the fixed particles are
indicated by full circles. The nucleus is indicated by the broken line.

spheres this problem has been solved recently [53], this topic
has not been addressed for soft and metallic systems. DFT-
based results can readily be compared to data obtained via
thermodynamic theories, such as Spaepen’s expression [54],
and to existing simulation data (see, e.g., [55]). In case a wall
is established by an external potential acting on the system,
wall–fluid and wall–solid interfacial free energies have to be
considered. They can be treated within DFT and results can be
compared to simulation studies (e.g. [56] for hard-sphere solids
and liquids near hard walls).

3.1.2. The critical nucleus for heterogeneous nucleation.
In an undercooled or compressed fluid which is exposed to
an external potential, the microscopic one-particle density
distribution ρc(r) of the critical nucleus for heterogeneous
nucleation can be found by a search for a saddle point in the
static density functional [57] by imposing a boundary condition
to the minimization. This field represents a statistical average
of all typical configurations. In the following we discuss in
more detail four typical set-ups for the formation of the critical
nucleus; they are schematically represented in figure 1.

The four different set-ups for heterogeneous nucleation are
as follows:

(a) Heterogeneous nucleation near a smooth planar system
wall (cf figure 1(a)): the system wall is modeled via an
external potential Vext(z) depending on a single spatial
coordinate z perpendicular to the wall. An example is a
laterally integrated Lennard-Jones potential, i.e.

Vext(z) = V0

[(
σ

z

)9

−
(
σ

z

)3]
. (10)

As far as thermodynamic variables are concerned,
different distances relative to bulk solid–fluid coexistence

can be considered. In this case, the critical nucleus
will have two different moments of inertia on average,
one corresponding to the z axis as principal axis and
another one perpendicular to it. For this set-up, DFT
results can also be compared to classical nucleation theory.
Furthermore, based upon the microscopic density profile
ρc(r) of the critical nucleus, it can be verified whether
and how the concept of the contact angle is justified on
a micro-scale.

(b) Heterogeneous nucleation near a periodically structured
planar system wall (cf figure 1(b)): the previous set-
up can be extended to the case of a periodic external
potential, Vext(r): either via a one-dimensional periodic
substructure on the wall, i.e. Vext(r) = Vext(z, x), or
via a full two-dimensional lateral periodicity where a
two-dimensional array of fixed particles is considered.
In the experimental counterpart, such a set-up can be
realized by the use of optical tweezers. In this set-up
the wall structure plays a central role: depending on
the specific structure and on the shape of the potential
it has a distinct influence on the critical nucleus and is
thus able to inhibit or accelerate heterogeneous nucleation.
Further, the competition between the nucleus and substrate
structure will largely influence the nucleation rates.

(c) Heterogeneous nucleation around a large spherical particle
(cf figure 1(c)): in this set-up, the external potential Vext(r)
is radially symmetric. Again, a typical example is the
shifted Lennard-Jones potential, i.e.

Vext(r) = V0

[(
σ

|r − r0|
)12

−
(

σ

|r − r0|
)6]

. (11)

The size of the particle as well as the explicit form of
Vext(r) have a distinct influence on the nucleation process.

(d) Heterogeneous nucleation around a set-up of fixed
particles (cf figure 1(d)): generalizing example (c), an
external nucleation seed of fixed particles is considered.
This set-up is motivated by recent real-space experiments
on colloids [58]. Here the variety of problems and
questions to be addressed is even broader: how does
a given symmetry of the fixed particle cluster steer the
resulting growing crystal? Is it possible to generate
a quasicrystal if the starting germ has a fivefold
symmetry? How is the nucleation rate affected by the
mismatch of solid structure between the seed and the
thermodynamically stable crystalline phase?

3.1.3. DDFT for subsequent microstructure formation. Once
the density field of the critical nucleus is determined, it can
be used together with a small added noise contribution as a
starting density profile for further dynamical evolution. DDFT
allows for a deterministic expression of the time development
of the density profile. This profile contains in principle
any information about the solid microstructure and includes
elastic deformation, vacancies and anisotropies across the
solid–fluid interface. The second-order integro-differential
equation (9) can be solved numerically by an iterative scheme.
Typical ranges of time windows which are accessible on
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Figure 2. Four snapshots of a two-dimensional density configuration ρ(r, t)/ρ at times t/τB = 0, 0.5, 1.0, 3.0 (with τB denoting a the
Brownian timescale of the colloidal particles) after offering a nucleus to an infinite undercooled liquid at time t = 0, where the nucleus
consists of three infinite rows of Gauss peaks. The left/right half of a rectangular periodic box with Lx/L y = 8

√
3 comprises 64 particles.

Note the logarithmic color scale.

present-day computers are 10–50 τB, where τB is a typical
particle Brownian timescale. This allows for observation of
the dynamical formation of several crystalline sheets and is
ample enough to observe the crossover from post-nucleation
dynamics to steady-state crystal growth. In section 3.2 we
present results of a test case for such investigations.

3.1.4. DDFT for heterogeneous nucleation. A more
ambitious microscopic approach to heterogeneous nucleation
is to solve the DDFT together with thermal noise on it. The role
of noise has recently been investigated within the framework of
DDFT [46] but certainly more fundamental work is needed in
this direction to clarify the role of fluctuations in the mean-
field-like density functional theories. However, unlike in the
umbrella-sampling technique, only small free energy barriers
will really lead to a nucleation event. But the challenging
question is whether even in this case a microscopic theory for
the heterogeneous nucleation rate can be established.

3.2. Heterogeneous nucleation in two-dimensional dipolar
systems: a test case

The general research outline described in section 3.1 was
completely followed for a special simple test case, namely
a one-component system of two-dimensional dipoles with
a purely repulsive inverse-power-law interaction potential.
This one-component system exhibits a freezing transition
from a fluid into a two-dimensional hexagonal crystal. The
equilibrium density functional was approximated by the tra-
ditional (and simplest) Ramakrishnan–Yussoff expression [21]
which provides a reasonable description of the bulk phase
diagram [59, 60]. The dynamical density functional theory

was solved numerically on a fine grid in two spatial dimensions
and was applied to a variety of nucleation and crystal growth
problems [47, 61, 62].

A linear array of fixed particles is shown in figure 2.
This corresponds to the set-up (b) proposed in figure 1 for
the special case that the wall structure is made up by fixed
but otherwise identical particles. The initial density profile
consists of two layers of crystalline particles modeled as sharp
delta peaks. They serve as an external nucleus for subsequent
crystal growth. After a quick relaxation of the density fields in
the neighborhood of the imposed nucleation array, a crystalline
front is growing until the whole box is filled with crystal.

Furthermore, in [62], an externally imposed heteroge-
neous nucleation cluster of fixed particles with hexagonal
geometry was offered to a fluid system. Whether there is
subsequent crystallization depends on both the spacing of
the particles and the total number of fixed particles. This
shows that structural details of the nucleation cluster are
important. Moreover, the dynamical density functional theory
was compared against Brownian dynamics simulations and
qualitative agreement was found.

In conclusion, the whole scenario of heterogeneous
nucleation was calculated with DDFT for a two-dimensional
dipolar system in agreement with simulations. This is
promising as one may expect that more complex and
complicated nucleation problems in three-dimensional and/or
two-component systems can be described by DDFT as well.

4. Relation to the phase field crystal (PFC) model

The phase field crystal (PFC) model is more coarse-grained
than dynamical density functional theory. Typically it starts
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with a phenomenological free energy functional F[ψ(r, t)] of
a phase field ψ(r, t) and a dynamical equation for the phase
field’s time evolution similar to the DDFT equation [17, 18]:

ψ̇(r, t) = Dρ∇2[ψ(r, t) − 1
2ψ(r, t)2 + 1

3ψ(r, t)3

+ (kBT )−1Vext(r, t)− ρ(Ĉ0 − Ĉ2∇2 + Ĉ4∇4)ψ(r, t)],
(12)

where Ĉ0, Ĉ2 and Ĉ4 are phenomenological prefactors. As a
special case, one may set F[ψ(r, t)] equal to an approximative
Helmholtz free energy density functional [63]. Then the
phase field is interpreted as the density field, i.e. ψ(r, t) =
ρ(r, t). Recently [47] it was shown that the commonly used
PFC equation [17, 18] can be derived from DDFT under
an additional gradient approximation [64–66] in the order
parameter and a so-called ‘constant mobility approximation’.
While the former is inherent in order to get any local theory, the
latter can be avoided leading to a better-justified variant of the
traditional phase field crystal model [47] which is as follows:

ρ̇(r, t) = D∇2ρ(r, t) + D∇ · {ρ(r, t)∇[(kBT )−1V (r, t)

− (Ĉ0 − Ĉ2∇2 + Ĉ4∇4)ρ(r, t)]}. (13)

Both phase-field-crystal approaches were tested against
for a two-dimensional dipolar system [47]. In particular, the
front crystal growth velocity of a two-dimensional solid into
the melt at an imposed linear array of fixed particles (see
again in figure 2) was calculated. Although the phase field
crystal models predict wider interfaces as compared to the
DDFT, in general reasonable agreement was found between
the full DDFT data and the phase-field-crystal models provided
a suitable scaling was performed needing to match the bulk
phase diagram. As expected, the new variant proposed in [47]
has a slightly better performance than the traditional phase-
field-crystal model.

5. Conclusion

In conclusion, classical density functional theory provides
an ideal theoretical tool to describe crystal nucleation and
growth phenomena for colloidal systems whose dynamics is
Brownian. The theory is microscopic, i.e. it works with
the basic underlying interactions as an input and predicts the
time-dependent density fields as an output. In particular,
an external potential can directly be incorporated into the
density functional approach which make it a versatile tool for
heterogeneous nucleation. The nucleation and growth behavior
at different imposed nucleation seeds have been calculated
for one-component two-dimensional dipolar systems which are
realized by superparamagnetic colloids at a pending air–water
interface [67]. Qualitative but not quantitative agreement was
found with Brownian dynamics computer simulations [62]. In
particular the asymmetry in the parameter space for which
crystal growth was found is confirmed by Brownian dynamics
simulations (cf figure 3 in [62]). These results also provided a
testing ground for more phenomenological phase-field-crystal
models.

Future research should focus on three-dimensional and
binary systems. Examples include the binary mixture of

two-dimensional dipoles which exhibits a rich equilibrium
phase behavior [68–70] and the three-dimensional Asakura–
Oosawa–Vrij model for colloid–polymer mixtures which has
been studied extensively near walls [71, 72]. For the
former a Ramakrishnan–Yussoff approximation for the density
functional can be employed [59, 60] while for the latter a
Rosenfeld-like approximation is known [73, 74]. The results
can be tested against computer simulations [75] and real-space
experiments [76] on three-dimensional colloidal dispersions.

Once the critical nucleus for heterogeneous nucleation is
determined and is thus known on the full microscopic scale,
the following questions can be answered directly:

(i) What is the size and shape of the critical nucleus?
In particular, how anisotropic is the critical nucleus
for a given external potential acting as a source for
heterogeneous nucleation?

(ii) Is the crystalline structure inside the critical nucleus the
same as that for the stable solid phase?

(iii) How broad and diffuse is the fluid–solid interface of the
critical nucleus? Is there an elastic distortion of the
interface?

(iv) What is the free energy barrier �G∗ of the critical
nucleus? Is it larger or smaller than that for homogeneous
nucleation? This gives insight into the nucleation rate
which scales as exp(−�G∗/kBT ), where kBT is the
thermal energy.

Even more ambitious is the treatment of metallic
alloys [19] within density functional theory. For the
equilibrium phase diagram one may think about using an
effective pair potential for the force field and employing a
hard-sphere perturbation approach for the density functional
combined with a mean-field theory. The dynamics of metals,
however, is undamped and it is a great challenge to generalize
the DDFT approach towards Newtonian dynamics. Although
the first progress has been achieved here [77], the DDFT is
much less advanced for molecular dynamics when compared
to completely overdamped Brownian dynamics.
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80 48001
[69] Fornleitner J, Lo Verso F, Kahl G and Likos C N 2008 Soft

Matter 4 480
[70] Fornleitner J, Lo Verso F, Kahl G and Likos C N 2009

Langmuir 25 7836
[71] Wessels P P F, Schmidt M and Löwen H 2004 J. Phys.:
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